Computing loss of efficiency in optimal Bayesian decoders given noisy or incomplete spike trains.

نویسندگان

  • Carl Smith
  • Liam Paninski
چکیده

We investigate Bayesian methods for optimal decoding of noisy or incompletely-observed spike trains. Information about neural identity or temporal resolution may be lost during spike detection and sorting, or spike times measured near the soma may be corrupted with noise due to stochastic membrane channel effects in the axon. We focus on neural encoding models in which the (discrete) neural state evolves according to stimulus-dependent Markovian dynamics. Such models are sufficiently flexible that we may incorporate realistic stimulus encoding and spiking dynamics, but nonetheless permit exact computation via efficient hidden Markov model forward-backward methods. We analyze two types of signal degradation. First, we quantify the information lost due to jitter or downsampling in the spike-times. Second, we quantify the information lost when knowledge of the identities of different spiking neurons is corrupted. In each case the methods introduced here make it possible to quantify the dependence of the information loss on biophysical parameters such as firing rate, spike jitter amplitude, spike observation noise, etc. In particular, decoders that model the probability distribution of spike-neuron assignments significantly outperform decoders that use only the most likely spike assignments, and are ignorant of the posterior spike assignment uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variability and coding efficiency of noisy neural spike encoders.

Encoding synaptic inputs as a train of action potentials is a fundamental function of nerve cells. Although spike trains recorded in vivo have been shown to be highly variable, it is unclear whether variability in spike timing represents faithful encoding of temporally varying synaptic inputs or noise inherent in the spike encoding mechanism. It has been reported that spike timing variability i...

متن کامل

Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes

Neural spike trains present challenges to analytical efforts due to their noisy, spiking nature. Many studies of neuroscientific and neural prosthetic importance rely on a smoothed, denoised estimate of the spike train’s underlying firing rate. Current techniques to find time-varying firing rates require ad hoc choices of parameters, offer no confidence intervals on their estimates, and can obs...

متن کامل

Bayesian Sample Size Computing for Estimation of Binomial Proportions using p-tolerance with the Lowest Posterior Loss

This paper is devoted to computing the sample size of binomial distribution with Bayesian approach. The quadratic loss function is considered and three criterions are applied to obtain p-tolerance regions with the lowest posterior loss. These criterions are: average length, average coverage and worst outcome.

متن کامل

Information transmission with spiking Bayesian neurons

Spike trains of cortical neurons resulting from repeated presentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output var...

متن کامل

Variability and coding e ciency of noisy neural spike encoders

Encoding synaptic inputs as a train of action potentials is a fundamental function of nerve cells. Although spike trains recorded in vivo have been shown to be highly variable, it is unclear whether variability in spike timing represents faithful encoding of temporally varying synaptic inputs or noise inherent in the spike encoding mechanism. It has been reported that spike timing variability i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Network

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2013